Worksheet 6 Solutions

1. table for Qs look like:

$\begin{aligned} & \text { Q_(01) } \\ & (1 / 2) \end{aligned}$	$\begin{array}{r} 0.1111 \\ 11 \end{array}$	$\begin{aligned} & \text { Q_(11) } \\ & (1 / 2) \end{aligned}$	$\begin{array}{r} 0.6666 \\ 67 \end{array}$	$\begin{aligned} & \text { Q_(2,2) } \\ & (1 / 2) \end{aligned}$	1.5	$\begin{aligned} & Q_{-}(3,3) \\ & (1 / 2) \end{aligned}$	$\begin{array}{r} 1.7777 \\ 78 \end{array}$	Q_(44)	$\begin{array}{r} 1.7083 \\ 33 \end{array}$
11	$\begin{array}{r} 0.3333 \\ 33 \end{array}$	21	$\begin{array}{r} 1.3333 \\ 33 \end{array}$	32	$\begin{array}{r} 1.8333 \\ 33 \end{array}$	43	$\begin{array}{r} 1.6666 \\ 67 \end{array}$		
21	1	31	2	42	1.5				
31	3	41	0						
41	9								

b. for the other approximation, table for Qs look like

	$\begin{aligned} & \text { Q_(01) } \\ & (1 / 2) \end{aligned}$	0	$\begin{aligned} & \text { Q_(11) } \\ & (1 / 2) \end{aligned}$	3	$\begin{aligned} & Q_{-}(2,2) \\ & (1 / 2) \end{aligned}$	$\begin{array}{r} 1.2426 \\ 41 \end{array}$	$\begin{aligned} & Q_{-}(3,3) \\ & (1 / 2) \end{aligned}$	$\begin{array}{r} 1.6213 \\ 2 \end{array}$	Q_(44)	$\begin{array}{r} 1.6906 \\ 07 \end{array}$
	11	1	21	$\begin{array}{r} 1.8284 \\ 27 \end{array}$	32	$\begin{array}{r} 1.7475 \\ 47 \end{array}$	43	$\begin{array}{r} 1.7367 \\ 98 \end{array}$		
	21	$\begin{array}{r} 1.4142 \\ 14 \end{array}$	31	$\begin{array}{r} 1.7071 \\ 07 \end{array}$	42	$\begin{array}{r} 1.7260 \\ 49 \end{array}$				
	31	2	41	$\begin{array}{r} 1.7639 \\ 32 \end{array}$						
	41	$\begin{array}{r} 2.2360 \\ 68 \end{array}$								

2. For this just need to solve:
a. $y=\frac{6}{2^{3}}+\frac{b}{2^{2}}+\frac{c}{2}$
b. $3=6+b+c$
c. $2=6 \cdot 2^{3}+b 2^{2}+2 c$
d. I get $y=\frac{3}{4}-\frac{8}{4}-\frac{11}{2}$
3. I got
```
2.360605
```

4. apply divided differences to see that the fourth and fifth order terms are zero.
